: @
GPU Acceleration of Communication Avoiding Chebyshev Basis
Conjugate Gradient Solver for Multiphase CFD Simulations

Yussuf Ali, Naoyuki Onodera, Yasuhiro Idomura,
Center for Computational Science and e-Systems, Japan Atomic Energy Agency

Takuya Ina, T. Imamura
RIKEN Center for Computational Science

10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
November 18, 2019, Denver, CO, USA

Acknowledgements
*» S. Yamashita, S. Yamada, Y. Hasegawa (JAEA)

** This work is supported by MEXT (Grant for Post-K priority issue 6), OLCF (DD project),
JCAHPC (Oakforest-PACS grand challenge), HPCI(hp190073), JHPCN (jh190050) .

*» Computation is performed on Oakforest-PACS@JCAHPC, Reedbush@U.Tokyo,
Tsubame3.0@Tokyo Tech., ABCI@AIST, SUMMIT@ORNL, and ICEX@JAEA.

I Exa-scale simulations for severe accident analysis

JAEA promotes the development of multiphase thermal-hydraulic CFD code
for analyzing severe accidents in the Fukushima Daiichi Nuclear Power Plant

JUPITER code [Yamashita,NED2017] sSimulates relocation of molten materials in
nuclear reactors as incompressible viscous fluids.

= Finite difference in structured grids (immersed boundary)
= Volume of fluid method for multiphase flows Peta-Scale

1’ ?
"4

= Multi-components (fuel, absorber, structures)

= 3D domain decomposition (MPI+OpenMP)

Target problems
= Peta-scale (K-computer, Tsubame3.0)
= Simulate melt-relocation behavior of several fuel assemblies
= Exa-scale
= Severe accident analysis for whole reactor pressure vessel

l Pressure Poisson solver in JUPITER

Melt relocation of fuel assemblies
= Solid/Liquid phases of UO,, Zry, B,C, SUS, and Air

Pressure Poisson Solver

At
V-u”H:V-u*—V-(—Vp) =0

Problem size: 1,280x1,280x4,608~7.5G grids

P
Pressure Poisson solver occupies more than 90% of the total cost
2"d order centered finite difference in structured grids (7-stencils)

Large density contrast ~107 of multiphase flows gives an ill-conditioned
problem, and its condition becomes worse in larger problems

—>Preconditioner is essential

Communication Avoiding (CA) Krylov solvers on CPU platforms
[A. Mayumi, Y. Idomura, T. Ina, et al., Proc. ScalA’16@SC16 (2016)]
[Y. I[domura, T. Ina, A. Mayumi, et al., Lecture Notes Comput. Science 10776, 257 (2018)]
[Y. ldomura, T. Ina, S. Yamashita, et al., Proc. ScalA’18@SC18 (2018)]

—>In this work, we develop CA-Krylov solvers on GPU platforms

I Krylov solvers for Pressure Poisson equation

Algorithm Chebyshev Basis CACG (P-CBCG) method

A: symmetric block diagonal matrix Require: Ax = b, Initial guess xq
Algorithm Preconditioned Conjugate Gradient method 1: ro := b — Axq
Require: Ax = b, Initial guess x; 2: Compute Sy (To(AM~")rg, ..., T 1 (AM~")rg)

1: 1 ::b—Axl,zleflrl,pl =7 3: Qo = So ‘

2: for j =1,2,... until convergence do 4: for k=10,1,2,... until convergence do

3: Compute w := Ap; 5. Compute Ok

4- o = <rj,zj>/<w7pj> 6: Computed‘ CJZ\TI‘SAV o

5: Xjt1 =Xy + a;P; 7 ag = (Q/AQI»)i Q;rs/

6: rji1:=1r; — ;W 7 8: Xs(k+1) ‘= Xsk + Qray

7 Zjy1 1=]W*Ierrl SpMV 9: Fs(k+1) = Tsk — 44(2/vak

S 0= (v g/ (v) Precon 10 Compute

9 Pjt1:=12zj41 + 0;P; AXPY Skr1 (To(AM ™)rgigay, oo Too 1 (AM ™)y)
10: end for 11: Compute

122 By := SpMV+Precon
Chebyshev Basis Communication-Avoiding CG 12: i{gl ::__5'2%_ i
[Suda,RISM2016] s ond fon GEMM

s Comparisons of P-CG and P-CBCG (s=12) [Idomura,LNC52018]

P-CG P-CBCG P-CBCG/PCG
All_reduce/iteration 2 2/s 1/s
Computation [Flop/grid] 39.0 123.7 3.17
Memory access [Byte/grid] 248.0 312.0 1.26
Roofline time on ICEX [ns/grid] 4.33 5.61 1.30
Elapse time on ICEX [ns/grid] 5.19 6.71 1.30

¢ |ICEX@JAEA: Xeon E5-2680v3 (Haswell), B/F=0.12 ¢ Roofline model [Shimokawabe,SC10]

| Cost distribution of JUPITER on Oakforest-PACS
[l[domura,LNCS2018]

Strong scaling of JUPITER with P-CG, P-CACG(monomial basis), and P-CBCG
Problem size: (N,,N,,N,)=(800,500,3450)

N
o

1E-5

Y
A III TRt

1E-8
500 1000 2000 500 1000 2000 500 1000 2000

1E+1 - 50
P-CACG(S—3) mAllreduce ™ Halo comm SpMV+BJ m Other
1E+0 —P-CACG(s=4)
1E_1 A ——P—GBGG(—S:ZI-O-)— . 40
_ [8)

§ 162 - P-CBCG(s=45) \‘q”.i .
2 —CG o 30
9 13 +— €
o £
S 1E-4 E

0 2000 4000 6000 8000
Iterations P-CG P-CACG(s=3) P-CBCG(s=12)

s Chebyshev basis (CBCG) enables larger CA-steps than Monomial basis (CACG)
= Good strong scaling up to 2,000 KNLs (136k cores)
m In P-CG, cost of All_Reduce increases up to 63% of total cost at 2,000 KNLs
= In P-CBCG, cost of All_Reduce is reduced to 32% of P-CG
—>At 2,000 KNL, P-CBCG shows 1.4x speedup from P-CG

' Re-design GPU preconditioner

Block Jacobi preconditioner with Incomplete LU factorization

= Improve convergence by approximate inverse of block sub-matrices

= Intra-block cannot be parallelized because of data dependency

= Re-design data blocks for GPU threads
Data blocks on CPU = 3D domain decomposition (MPI1) x ~10 cores
Data blocks on GPU = 3D domain decomposition (MPI) x ~1,000 cores
—>Convergence degradation due to finer blocks

—>Need to optimize data access patterns on GPU
Block preconditioning

Ay

Incomplete LU factorization ILU(O)

A Fori=2,...,n Do:
Fork =1,...,i—1and for (i,k) € NZ(A) Do:
Compute a;, = a;i/axk

As

A, Forj=k+1,...,nandfor(i,j) € NZ(A), Do:
Compute a;; := a;j — a;a;.
As EndDo
EndDo

Ag EndDo

A7

' GPU optimization of the block Jacobi preconditioner
[Ali, GTC Japan 2018]

Comparison of P-CG on 1CPU/GPU
Problem size: 256x128x512
= Broadwell (14cores): 1D block decomposition(z) > 256x128x36~10%/block
= P100 (3,584cores): 3D block decomposition(xyz) - 8x8x8=512/block
s Finer cube blocks lead to 50% increase in number of iterations
s Slower than CPU because of strided data access
= P100 (3,584cores): 3D block decomposition(xyz) - 8x8x1=64/block
m 2D tile blocks lead to 64% increase in number of iterations
s 3.7x speedup by coalesced data access in z-direction

—>Trade off between mathematical and computational properties
200

3.7
174
157

150 3
106 o
1 =100 29
(]
Q.
: 1.0 0.9 <

50 5 1

Largest stride Large stride Coalesced memory access I I
0

0
CPU(256x128x36) GPU(8x8x8) GPU(8x8x1)

Iterations

Block shape dependency of P-CG solver (JUPITER:256x128x512=1.7M grids)

l Refactoring GPU kernels

Algorithm Chebyshev Basis CACG (P-CBCG) method

Require: Ax = b, Initial guess xg
1: rg := b — Axg
2: Compute Sy (To(AM_l)I‘(), ...,Ts_l(AM_l)I'O)
3: Qo= So
4: for £k =0,1,2,... until convergence do
Compute (), AQ),.
Compute (), r;
ay = (QpAQk) " Qrrsk
Xs(k+1) = Xsk + Qkak
Ts(k+1) ‘= Tsk — AQray,
Compute
Sk+1 (To(AM_l)rs(k+1), v Ts (AM_l)I'S(]H_l))

1

11: Compute), A5,
122 By :=(Q;AQk) ' Q; ASk i1 SpMV+Precon
130 Qi1 = Sp1 — QB
14: AQpy1 = ASk11 + AQ LBy GEMM
15: end for

m Refactored kernels
= SpMV
= Precon

= Tall-Skinny GEMM (computation for multiple basis vectors)
= GEMM/GEMV (reuse matrix data to reduce memory access)
cf. Size of each kernel is limited by registers and shared memory

AQ

L

AQ

Refactoring

d -
d

l Roofline estimate of CUDA implementation

P100: F=5300GF, B=550GB/s

Roofline estimate for P-CBCG(s=12) CUDA solver on 1 GPU
Problem size: 512x128x256

Flop/Byte 0.165
Blocks nx*ny*nz/512
Threads 512
Roofline time/grid(ns) 0.170
Elapse time/grid(ns) 0.187
Roofline ratio 0.91

Multiply matrix pairs | TS matrix

Halo data

Data region

—tp

T o W

1

0.156 1.108 1.04
560 Chosen by Batched 128
64 GEMM in cuBLAS 288
0.237 0.089 0.101
0.272 0.096 0.120
0.87 0.93 0.84

Small result matrices

120

B+ +El=

| Final result matrix ‘

100

Time (msec)
N H (@) [00]
o o o o

o

Tall-Skinny GEMM is optimized by batched GEMM in cuBLAS

DGEMM for T-S matrix (1e6 x 12)

97.46

\

\ 15.3x
\

\

\ 634
]
DgemmBatched

Dgemm

l Overlap halo data communication with computation

s Hybrid CA approach [Mayumi,ScalA’16@SC16]
= All_Reduce - Comm. avoiding
= Halo comm. - Comm. overlap

—>Resolve remaining comm. bottleneck
in preconditioned CA-Krylov methods

= Divide computing kernels into core and
surface parts, and overlap the former

= Maximize coalesced memory access
= Overlap multiple CUDA streams

m P-CG provides more overlap
= P-CG: AXPY->Halo->SpMV
— 25~30% cost reduction
= P-CBCG: SpMV—->Halo->SpMV
— 10~15% cost reduction

Only surface parts need halo data

B
L,

Stream 1

Compute AXPY for
the surface of p and x

Start Halo data

EXEhAITEE Stream 2

Compute AXPY for
Inter/Intra the core of p and x
node comm.

Compute SpMV for
the core part

MPI_Waitall

Compute SpMV for
the surface part

Synchronize ===

10

' Strong scaling of P-CBCG on Oakforest-PACS, ABCl and Summit

Strong scaling at 512, 1,024, 2,048 KNLs/V100s
Problem size: 1,280 x 1,280 x 4,608
KNL (Oakforest-PACS): 3.0TF, 480GB/s, Omni-path(12.5GB/s) (1CPU per node)

V100 (Summit): 7.8TF, 900GB/s, IB-EDR4x(25GB/s) (6 GPUs per node)
V100 (ABCI): 7.8TF, 900GB/s, IB-EDR4x(25GB/s) (4 GPUs per node)
1E+1 220 212.54
CPU —GPU 00 M calculation+halo-data-exchange
1E+0 180 m collective communication
1E-1
\ 160
g 1E-2 +— 140 126.47 127 00
9 1E3 T 8 120 107.64
© 9]
.-3 1E-4 § 100 83 14
g 1E-5 \\ 80 721 70 11
\ 60 67
1E-6 \ 20 39.41
1E-7 \ 20 I
1E‘8 T T T 1 0
0 5000 10000 15000 20000 KNL Summit ABCI KNL Summit ABCI Summit ABCI
1,024 2,048

Iterations
number of GPUs/CPUs

= Block Jacobi preconditioner for GPU requires 1.4x iterations
= ABCl is faster than Summit because of higher interconnect B/W per GPU
= At 2,048GPUs/CPUs, ABCl is 1.8x faster than Oakforest-PACS

11

l Impact of communication avoiding implementation on GPU

msec/iteration

Detailed cost distribution at 1,024 KNLs/V100s

10

8

6

N

o

P-CG 10 P-CBCG
M Precon m AXPY M Precon B Matrix
H SpMV AXPY+Halo+SpMV g - m SpMV Halo+SpMV
I Halo m Reduce S Halo M Reduce
5 6
— s e 1.15x
. 131X s B T — e 1.12x
~. b 4 S e ——

3
E BB

II H
N
ul
x
o N

KNL Summit Summit ABCI ABCI KNL Summit Summit ABCI ABCI
no Ovl. no Ovl. Ovl. no Ovl. Ovl. no Ovl. no Ovl. Ovl. no Ovl. Ovl.

Computing kernels of P-CG/P-CBCG show 1.5x/2.0x speedups on V100
All_Reduce on V100 is >10x faster than KNL (flat mode, 64cores x 2SMT)
—>Smaller impact of CA-Krylov methods on V100

Halo is 2x/3x slower on ABCl/Summit following interconnect B/W per socket
—>Halo data communication is remaining bottleneck on V100
Communication overlap has significant impact on V100

—>P-CG and P-CBCG are accelerated by 25~30% and 12~15%, respectively
12

' Strong scaling of P-CG and P-CBCG on Summit

Strong scaling at 480 - 7,680 V100s
Problem size: 1,280 x 1,280 x 4,608 (lterations are fixed to 480 SpMV)

M calculation+halo-data-exchange

M collective communication
0 96
0.61 0.58
. . O 41 O 41

P-CBCG P-CG [P-CBCG P-CG [P-€CBCG P-CG [P-CBCG P-CG |P-CBCG P-CG

Seconds

480 960 1,920 3,840 7,680
Number of GPUs

s P-CG outperforms P-CBCG up to 3,840 GPUs
—>P-CG has less computation and larger impact from comm. overlap
m At 7,680 GPUs, both solvers become comparable because of All_Reduce

—>Cost of All_Reduce is reduced from ~20% in P-CG to ~1.3% in P-CBCG
13

ISummary

P-CG and P-CBCG solvers in JUPITER code were ported on ABCl and Summit
= GPU porting
= Block Jacobi preconditioner was re-designed for >103 GPU cores
= Fully utilized GPU performance, but 1.4x more iterations
= Refactored GPU kernels achieved 90% of roofline performance
= Batched GEMM was essential for Tall-Skinny matrix operations
= Overlap halo data communication and computation

= GPU performance on V100
= GPU solvers achieved 2x speedup compared with CPU solvers on KNL
= Bottleneck of halo data comm. was resolved by comm. overlap
= P-CG/P-CBCG showed good strong scaling up to 7,680 GPUs on Summit
» P-CG: larger impact from comm. overlap for halo data comm.
= P-CBCG: less All_Reduce
—>P-CBCG is promising for strong scaling beyond 10* GPUs

14

